
Bug Tracking

How our bug tracking system works?

We use a web based bug tracking software currently installed on

http://cubist.cs.washington.edu/projects/09sp/cse403/cookingspecial/bug/ . Both our team

members and customers submit bugs through this software. However, we have two

different projects under this software. "Cooking Special" project is only for team use. For

any anonymous user, this project is invisible. We assign tasks and submit bugs using this

section. "Cooking Special Bug Report" project is for customers or anonymous visitors to

submit the bugs they have found or to request the features they want to see in our project.

Here is a screenshot of our bug tracking system.

1) How does a developer file a new bug.

"Cooking Special" Project on

http://cubist.cs.washington.edu/projects/09sp/cse403/cookingspecial/bug/ is for our

developers to submit the bugs they have found. They log into the system by typing their

usernames and passwords. This section is visible only to developers. You can check this

section by typing "johndoe" as your username and password.

When a developer submits a new bug, he enters the category of the bug such as Data

Gathering, Frontend or Backend, current status of the bug, severity of the bug, and

priority. He can assign the bug to a person who is responsible from that category or add

some other people to watch the process of handling this bug. Therefore the probability of

missing any bug is minimized with this method.

http://cubist.cs.washington.edu/projects/09sp/cse403/cookingspecial/bug/

2) How does a customer file a new bug.

If a customer goes to our bug tracking website, he won’t be able to see the submitted

bugs by our developers, but he will be able to submit new bugs by creating an account

 or even anonymously. Customer can either submit a bug in the system, or he can request

a new feature. He also enters the category of the bug so that the submitted bug is directed

to the correct person who is responsible from that category. He can also specify the

severity and priority of the bug. So developers can take immediate actions if there is a big

problem with the system or some tasks can be prioritized over others if they are more

severe. Customers can also specify their email address to watch the process of his

submitted bug. He is mailed immediately in case of any process.

Please make sure All Projects

http://cubist.cs.washington.edu/projects/09sp/cse403/cookingspecial/bug/index.php?project=0&d

o=index&switch=1 is selected when searching for existing bugs. Moreover customers file bugs

under “Cooking Special Bug Report” while devs under “Cooking Special” (from the drop down

list box near top left).

Filing a bug guideline: PLEASE FOLLOW THIS

1. Please try to fill all the fields on our website to your best knowledge

2. Summary: Please describe the bug in approximately 60 or fewer characters.

3. In the Details Field, please include the following in the with appropriate heading.

Description: The details of your problem report, including:

Overview: More detailed restatement of summary.

Steps to Reproduce: Minimized, easy-to-follow steps that will trigger the

bug. Include any special setup steps.

Actual Results: What the application did after performing the above steps.

The application crashed.

Expected Results: What the application should have done, were the bug

not present. (AND/Or, at least, the application should not crash.)

Build Date & Platform: Date and platform of the build in which you first

encountered the bug.

Additional Builds and Platforms: Whether or not the bug takes place on

other platforms (or browsers, if applicable).

Additional Information: Any other useful information.

4. Add an attachment: You can attach relevant files to a bug report. Debugging

information more than 20 lines long should be supplied this way. Also, if you

have an HTML file that demonstrates the bug, you should attach that. You can

only attach one file during initial submission so if your demonstration needs

more, revisit the newly filed bug to do this part. Attach any subsidiary files (such

as images) first and then edit the HTML file to point to the new URLs of the

attached files before uploading, so the demo is self-contained. Ask before

attaching more than five files.

http://cubist.cs.washington.edu/projects/09sp/cse403/cookingspecial/bug/index.php?project=0&do=index&switch=1
http://cubist.cs.washington.edu/projects/09sp/cse403/cookingspecial/bug/index.php?project=0&do=index&switch=1

This above information was mainly taken from the Mozilla developer page at

https://developer.mozilla.org/index.php?title=En/Bug_writing_guidelines&action=print

which is also available on our server at

http://cubist.cs.washington.edu/projects/09sp/cse403/cookingspecial/bug_report/bug_gui

delines.htm

How our testing system works?

We use JMeter for testing. JMeter is a desktop application written in Java, which allows

users to load, test and analyze HTTP, HTTPS websites and even databases. We can query

a web page and the database with different input strings in a loop. Here is the screenshot

of our first tests.

The test scripts are saved in .jmx files. As we build up our system, our testing mechanism

will be pretty much writing and running these jmx files. Since we currently have a single

index.php page in our host, we tested this page and here is a sample of our running

testing system.

https://developer.mozilla.org/index.php?title=En/Bug_writing_guidelines&action=print
http://cubist.cs.washington.edu/projects/09sp/cse403/cookingspecial/bug_report/bug_guidelines.htm
http://cubist.cs.washington.edu/projects/09sp/cse403/cookingspecial/bug_report/bug_guidelines.htm

